

(FRONT) GeoChem Getting Started Guide

- (1) Check your instrument window: Is the correct window installed? Is it intact? Clean it with an alcohol/wet wipe.
- (2) Shoot your quartz blank; it should come back with no elements except Si & LE (right). If it reports any other elements (after cleaning) replace the window.
- (3) Check your Test Times (below). 30 seconds per beam is a good starting place. Beam 3 is generally not needed. Increases test times if lower limits of detection are needed. Test times can be optimized based upon the elements measured in each beam.
- (4) Confirm that your collimator is turned off (if present on your instrument).
- (5) You can customize the order in which the instrument displays the elements or sort by concentration or atomic number (back page)
- (6) Confirm that PseudoElements, UserFactors, and Compounds are turned off, unless needed (back page).

🕈 Jan 28-7		÷ 📚 💷		
🗘 Geoche	em(2)	-		
El	PPM	+/-		
Si	49.75%	0.12		
LE	50.25%	0.12		
< LOD				
El	PPM	+/- 3σ		
Mg	ND	<4600		
Al	ND	<1100		
Р	ND	<110		
S	ND	<120		
к	ND	<210		
►	Ō	田		
Ready		OLYMPUS		

FIELD ENVIRONMENTAL INSTRUMENTS, INC. Experience beyond rentals.

> M-Series: Prolene

C-Series: Kapton Mesh

L-Series: Kapton ("Kap 50")

♠ > Test Times				♠ > Element Suite - GeoChem(3)			
Test Times				Beam 1: 40.0 kV			
Beam Min Max				Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ag, Cd, Sn, Sb, Ba,			
Beam1	0	30		W, Hg, Pb, Bi, Th, U, LE			
Beam2	0	30		Beam 2: 10.0 kV			
				Mg, Al, Si, P, S, K, Ca, Ti, Mn			
Enable Beam 3				Beam 3: 50.0 kV			
K				Ag, Cd, Sn, Sb, Ba, La, Ce, Pr, Nd, LE			
	Beam 3 is for most to	optional an esting situat	d not tions.	needed			
÷				← ?			

OLYMPUS

OLYMPUS

(BACK) GeoChem Getting Started Guide

1 Live View	w	0 🗢 🚆 📾	1	Live View			0 🗢 🖥 🚥	♠	Apr 01-3			0 🗢 🚆 🖷	0
🕸 GeoCh	nem(3)	-	8	🕽 GeoChe	em(3)		-	\$ 3	GeoChe	em(3)			
Elapsed	time: 60.0s			Elapsed tir	me: 60.0s				Elapsed ti	me: 60.0s			
El ,	РРМ	+/-		E	PPM	~	+/-		El 🚍	PPM		+/-	
S	4640	170	_	Fe	7.936	%	0.037		As	422		4	
к	Increasing a	atomic numb	er or	Са	4.727	%	0.026		Pb	You ca	n cus	tomize tl	ne element
Ca	decreasin	g concentrat	ion	к	3.139	%	0.021		Ва	order	to ma	tch your	interests
Ti	works well to	r aispiaying r	esuit	^S Ti	7635		48		Cr	186			
v	93	3		s	4640		170		Se	4		0.7	_
Cr	186	4		Mn	1039		9		Ag	29		2	-
Mn	1039	9		Rb	905		5		Fe	7.936	%	0.037	ELEMENT ORDER
Fe	7.936%	0.037		As	422		4		v	93		3	
<u> </u>	160	24	-	7n	707				Ma	1020		0	_
	Ō tH				Ō	俳	Ę		♠	Ō	扭	Ę	
Ready		OLYMPUS		Ready			OLYMPUS	•	Ready			OLYMPUS	5

Additional Online Resources:

A Quickstart Guide for Best Practices

Vanta GeoChem Technical Tutorial Series

Techniques for Rapid and Accurate Sample Analysis in the Field

Using the Vanta to Assess Contaminated Land

🕈 🗲 Export Settings		↑ ► Export Settings
Files		File Type
Chemistry Result		CSV
		File Name
Spectrum		O Default
Aiming Image		File Name: Res-SN-yy csv
Sample Imag		Custom
Template		ExportData
geoChem	:=	ExportButu
geochem		Destination
File Type		USB Memory
Use the ge	oort template and	

csv file type to export your results as a spreadsheet. Set the export destination to the USB memory..

> Eler	ment Order		🔶 🗢 🚆 🚥							
\checkmark	As									
\checkmark	Pb	*N	OTE: Not all instruments are							
\checkmark	Hg	(calibrated for Ba by default.							
\checkmark	Cd		This Element Order is ideal							
\checkmark	Ba 🛠		for environmental							
~	Cr		applications. It prioritizes the							
\checkmark	Se		"gang of eight" as outlined by							
\checkmark	Ag		and Recovery Act (RCRA).							
\checkmark	Fe		These are the usual suspect							
\checkmark	LE		in environmental testing.							
÷	?									

Elements can be set to be displayed as their common oxides using the Compound Display feature.

:=

:=

OLYMPUS

yy-mm-dd-hh-mm-ss

OLYMPUS

1	>Compound	- Y 🗸 📕 🖷						
	Compound templates							
	GeoOxides 🗸 🗸 🗸							
	Element	Compound	Factor					
	AI	Al2O3	1.889					
	Ca	CaO	1.399					
	Fe	Fe2O3	1.430					
	К	K2O	1.205					
	Mg	MgO	1.658					
	Р	P2O5	2.292					
	Si	SiO2	2.139					
	Ti	TiO2	1.668					
	←	+ 1	i 🖍					
	•		OLYMPUS					